Causes of shear sensitivity of the toxic dinoflagellate Protoceratium reticulatum.
نویسندگان
چکیده
Dinoflagellates have proven extremely difficult to culture because they are inhibited by low-level shear forces. Specific growth rate of the toxic dinoflagellate Protoceratium reticulatum was greatly decreased compared with static control culture by intermittent exposure to a turbulent hydrodynamic environment with a bulk average shear rate that was as low as 0.3 s(-1). Hydrodynamic forces appeared to induce the production of reactive oxygen species (ROS) within the cells and this caused peroxidation of cellular lipids and ultimately cell damage. Exposure to damaging levels of shear rate correlated with the elevated level of lipoperoxides in the cells, but ROS levels measured directly by flow cytometry did not correlate with shear induced cell damage. This was apparently because the measured level of ROS could not distinguish between the ROS that are normally generated by photosynthesis and the additional ROS produced as a consequence of hydrodynamic shear forces. Continuously subjecting the cells to a bulk average shear rate value of about 0.3 s(-1) for 24-h caused an elevation in the levels of chlorophyll a, peridinin and dinoxanthin, as the cells apparently attempted to counter the damaging effects of shear fields by producing pigments that are potential antioxidants. In static culture, limitation of carbon dioxide produced a small but measureable increase in ROS. The addition of ascorbic acid (0.1 mM) to the culture medium resulted in a significant protective effect on lipid peroxidation, allowing cells to grow under damaging levels of shear rates. This confirmed the use of antioxidant additives as an efficient strategy to counter the damaging effects of turbulence in photobioreactors where shear sensitive dinoflagellates are cultivated.
منابع مشابه
Phylogenetic relationships of yessotoxin-producing dinoflagellates, based on the large subunit and internal transcribed spacer ribosomal DNA domains.
Yessotoxin (YTX) is a globally distributed marine toxin produced by some isolates of the dinoflagellate species Protoceratium reticulatum, Lingulodinium polyedrum, and Gonyaulax spinifera within the order Gonyaulacales. The process of isolating cells and testing each isolate individually for YTX production during toxic blooms are labor intensive, and this impedes our ability to respond quickly ...
متن کاملYessotoxins profile in strains of Protoceratium reticulatum from Spain and USA.
Seven strains of Protoceratium reticulatum isolated from Spain and the USA were cultured in the laboratory. Yessotoxins (YTXs) quantification and toxin profile determination were performed by LC-FLD and LC-MS/MS. The four Spanish strains were found to produce YTX and known YTX analogs, however, YTX was not detected in any of the three USA strains. Among the strains that produced YTXs, toxin pro...
متن کاملCombined Effects of Ocean Acidification and Light or Nitrogen Availabilities on 13C Fractionation in Marine Dinoflagellates
Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (εp) in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium ret...
متن کاملDinoflagellate cyst assemblages in recent sediments of Visakhapatnam harbour, east coast of India: influence of environmental characteristics.
The distribution and abundance of dinoflagellate cysts in recent sediments from Visakhapatnam harbour, east coast of India was investigated and compared with sediment characteristics and physico-chemical variables of the overlying water column. The cyst abundance varied from 11 to 1218 cysts g⁻¹ dry sediment. Changes in the cyst assemblages from phototrophic to heterotrophic forms were observed...
متن کاملMathematical description of yessotoxin production by Protoceratium 1 reticulatum in culture
19 20 The production dynamics of yessotoxin (YTX) by Protoceratium reticulatum and 21 phosphate uptake in culture were investigated in relation to cell growth. The equations 22 used were: the reparametrized logistic for cell production, Luedeking-Piret model for 23 yessotoxin production and maintenance energy model for phosphate consumption. 24 Thus, the YTX formation rate was proportional to p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology progress
دوره 25 3 شماره
صفحات -
تاریخ انتشار 2009